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effects were observed for lightly damped structures. As discussed in the present paper,
the noncausal effects were due to time aliasing occurring when continuous frequency
spectra were discretized. To suppress such errors, the numerical Laplace transform is
introduced and applied to the previous model, which was based on Fourier transforms.
The equations of motion of the system and the viscoelastic properties of the core are
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amplification of the Gibbs oscillations that are caused by the truncation of the spectrum.
The new solution technique is compared to the previous method. It is shown that
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Numerical results are validated for transient responses using experimental impact force
signals. The results are in good agreement with experimental data.
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1. Introduction

Transient responses of impacted structures are a source of concern, especially when dealing with occupational health.
Many manufacturing processes, such as riveting, are based on mechanical impacts. Strong impacts induce significant
transient vibrations and powerful transient noises that can undoubtedly cause hearing impairment. Sound production is
particularly strong with large, flexible impacted structures. Both the lack of effectiveness of auditory protection equipments
and the reluctance of workers to use them can result in hearing injuries. Therefore, partial constrained layer damping
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(PCLD) is sometimes used to reduce vibrations and, thus, the radiated noise. PCLD consists of a viscoelastic layer topped
with a constraining elastic layer that both cover part of the structure. PCLD can be applied to existing structures, and was
shown to be quite efficient when compared to complete constrained layer damping (CLD) [1].

Impact noises are partly due to the initial transient motion of structures [2-4]. Damping treatments designed to reduce
such vibrations would therefore greatly benefit from the modeling for transient time response of impacted mechanical
structures. Granger and Ross presented an analytical model of the time domain dynamics of PCLD treated beams [5]. Beams
were used as a basic structure to understand the behavior of more complex structures. In this model, the viscoelastic
properties of the core were nonlinear and the shear modulus was modeled using a Prony series in the Fourier domain. The
equations of motion (EOM) of the system were obtained using Lagrange’s equations. The EOM were converted in the
frequency domain using a Fourier transform, and were solved for frequency displacements using the assumed modes
method. The displacements were then converted back in the time domain using inverse discrete Fourier transforms (DFT).
The excitations used were experimental force signals. Time responses were shown to be in fairly good agreement with
experimental data, for various PCLD parameters.

It was shown, however, that responses calculated using the analytical model and solution method were noncausal for
systems with poor damping ratios. This was explained by the fact that the time signals for lightly damped beams remained
significant at the end of the calculation period, causing time aliasing in the solution process.

In order to extend the applicability of the model to any damping ratio, the present paper discusses time aliasing and
Gibbs oscillations, two phenomena encountered when analytical spectra are inverted numerically. The numerical Laplace
transform (NLT) and windowing in the frequency domain are introduced to significantly reduce these signal processing
issues. The model used by Granger and Ross is thus reformulated using a Laplace transform approach in order to avoid
noncausal effects and produce reliable initial transient responses. The response can be used in parametric studies of PCLD
treatments, regardless of the damping ratio of the system. Both formulations in the Fourier and the Laplace domains are
compared using experimental force signals and different PCLD configurations. Finally, the model developed in the Laplace
domain is validated experimentally.

2. Numerical inversion of an analytical spectrum

The method developed by Granger and Ross did produce interesting results, but lead to inaccuracies at the very
beginning of the time response signals. The authors stated that these noncausal displacements resulted from the use of
discrete Fourier transforms to invert the frequency response function (FRF) of PCLD beams. The magnitude of the error was
significant for signals that were not sufficiently damped by the end of the observation window. Fig. 1 shows an example of
the initial transverse displacement of an impacted beam for two configurations for which damping ratios differ. It is seen in
this figure that the time signal corresponding to the beam configuration that is highly damped ( ) is causal while the
other signal (— - —) is not. Such problem occurred even though simulations were run over 26s, which cost enormous
computing time and memory allocation. It will now be shown how the noncausal displacements are created during the
inverse discrete Fourier transform operation.

The inverse DFT is written as
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Fig. 1. Example of inaccuracy at the beginning of simulated beam displacements [5]: high ( ) and low (— - —) damping.
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where Fq is a an arbitrary sampled spectrum, Aw is the frequency step, N is the number of points in the spectrum,
and n and q are integers. Two processes are involved in the inverse DFT. First, an arbitrary continuous spectrum F(w) is
being discretized to form Fg. Second, the sampled spectrum is being truncated from w = -NAw/2 to (N - 1)Aw/2.
To understand how these two processes affect the resulting time signal, let us first consider the analytical expression of
the inverse continuous Fourier transform %! of a given spectrum F(w), i.e.
1 1 —+00 iwt
FUFON =f0 =5 [ F)e do, )
J —00
where f(t) is the corresponding signal in the time domain. Both the discretization and the truncation processes can be also
represented by analytical functions.
First, the discretization of the continuous spectrum F(w) with a frequency step Aw can be described analytically by the
Dirac comb function given by

+00
(0, Aw) = Aw >~ 8w — qAw), (3)
q=—00
where q is an integer.
Second, the truncation of F(w) can be represented analytically by a rectangular window function given by

1, |wl=<Q,

I(w, Q) = {0’ 1> 0, (4)

where Q is the cutoff frequency of the window. This frequency is chosen in such way that no critical spectral information is
being lost in the windowing process.
Therefore, it is possible to write Eq. (1) over a continuous time t in terms of Eqgs. (2)-(4), i.e.

+oo .
F(t) = l/ F(w) (0w, Aw) (0w, Q) e do. (5)
27 —00 —_————— e —
Discretization Truncation
We now propose to study independently functions IIT and I1, and their consequences in the time domain. The
continuous time function fp(t) resulting from the discretization of the spectrum can be written as
~ 1 +0o .
Fp = —/ F(wo)ITI(w, Aw) et dw. (6)
2 J_
In the time domain, the discretization of the spectrum is reflected by expressing Eq. (6) in terms of a convolution integral
(%), i.e.

Fp® = f(t)« Z = {IT(w, Aw)}. (7)
The inverse Fourier transform of the discretization function I17T is
+o0o
F UM, Aw)y = > 5(t — mTmax), (8)
m=—oo

where Tmax = 2n/Aw and m is an integer. By combining Egs. (7) and (8), /p(t) can be written as
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Fig. 2. Periodization of the time function f(t) due to inverse DFT.
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Hence, the consequence of discretizing the spectrum is the replication of the time signal f(t) with a period Tmax.
Assuming that the duration of f(t) is longer than Tmax, this results in an overlap of the periodic replications of the time
signal, as illustrated in Fig. 2. The signal obtained inside an observation window 0 < t < Tmax is @ summation of the actual
signal and the various replications appearing in the observation window. This phenomenon is called time aliasing, and it
causes considerable errors if the amplitude of f(t) is significant for t> Tmax.

The second issue related to the inverse DFT is the truncation of the spectrum. The continuous time function f7(t)
resulting from the truncation of F(w) can be written as

Fr(t) = = o F(o)(w, Q) et do (10)
I =5_ . (o, .
In the time domain, Eq. (10) becomes
fr =ft)« 7 {10, Q)}. (11)

The inverse Fourier transform of the truncation function II is

7 UI(0,Q) = %sinc(gt), (12)

where sinc is the cardinal sine function. Consequently, by combining Egs. (11) and (12), f1(t) is given by

Fr@®) =f(t) * %sinc(Qt). (13)

In the time domain, oscillations at the frequency Q2 can occur due to the sinc function. The oscillations are canceled out
wherever f(t) and its derivative are continuous, due to the convolution process. However, fast oscillations are not canceled
out and appear in the time signal if the amplitude or the slope of the signal have discontinuities. This time effect related to
the truncation of the spectrum is known as the Gibbs phenomenon. The amplitude of these oscillations decreases on both
sides of a discontinuity as does the amplitude of the sinc function when |t| increases. This means that some of the energy
contained in the analytical FRF leaks to both sides of the time domain discontinuities when the spectrum is truncated. For
instance, Gibbs oscillations are visible when a Fourier spectrum representing periodic square pulses is truncated.

Moreover, even though discretization and truncation of the spectrum were presented independently, they both can
occur simultaneously. Hence, the continuous time function 7(t) in Eq. (5) is written as

+00
fit)= m;oof(t — MTmax) * %sinc(()t) . (14)

Time aliasing Gibbs phenomenon

Consequently, the Gibbs phenomenon does not only affect the time signal f(t), but it also affects its replications.

Finally, time aliasing and Gibbs oscillations were introduced with a continuous time signal £(t). However, since DFT and
inverse DFT algorithms are reciprocal, inversion of a continuous spectrum using Eq. (1) with fixed parameters Aw and Q
lead to a time signal that is also discretized and truncated, with a time step At = 7/Q and an observation window of length
Tmax. The resulting discretized and finite time signal is related to the continuous signal in Eq. (14), and is given by
fn=f(mAt), withO<n<N-1.

As an example of time aliasing, let us now consider the analytical frequency response function of a single degree of
freedom (dof) system
H(Q) = %%- (15)

1-Q7)+2i(Q
where k and ( are, respectively, the stiffness and the damping ratio of the system. The nondimensional frequency is
Q = w/wy, where wy, is the natural frequency of the system. The envelope of the impulse response that corresponds to
Eq. (15) may be significant at all times included within 0 < t < +o0c. Therefore, it may be significant at t>Tmax and hence,
time aliasing may occur, as explained previously.

Fig. 3 shows the analytical impulse response ( ) of an arbitrary single dof system with { = 1 percent, k = 25N/m,
and wyp = 5rad/s. It is compared to the impulse response obtained using the inverse DFT on the discrete FRF of the system
(= = =). The discretization and truncation parameters of the spectrum were chosen as Aw = 2n/15 and Q = 1007 rad/s.
The two signals are obviously different. The amplitude is roughly 50 percent higher with the inverse DFT. A small phase lag
can be observed, causing the impulse response to begin with a value of —0.1 a.u. when the inverse DFT is applied. The
amplitude error and phase shift due to aliasing depend on the sampling parameters of the FRF. This example illustrates how
the inverse DFT can create noncausal displacement and errors over the entire observation window when applied for the
solution of an EOM defined in the frequency domain.

One should note that the Gibbs oscillations are not visible in this particular case. As it was seen previously, this
phenomenon occurs only when discontinuities or sharp amplitude changes are encountered in the time signal. Due to the
weak damping ratio chosen to illustrate the consequences of the periodic replications in Fig. 3, the time signal and its
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Fig. 3. Impulse response: analytical (

) and calculated using the inverse DFT (— - —).

derivative are practically continuous between t = Ty, and Tih,.. Therefore, the amplitude of the Gibbs oscillations is
negligible compared to the amplitude of the time signal resulting from the inverse DFT.

To overcome time aliasing, the solution proposed by Granger and Ross was to increase the simulation time to enormous
proportions with respect to the observation window. A longer simulation time yielded a lower signal amplitude at the end
of the observation window. For this purpose, the frequency step Aw was reduced, since Tmax = 27/Aw. However,
increasing Tmax required more computing time. We will see in the next sections that replacing DFTs by numerical Laplace
transforms can considerably reduce time aliasing errors without requiring enormous simulation time with respect to the
duration of the observation window. Nevertheless, the Gibbs phenomenon must also be treated carefully in the Laplace
domain.

3. Numerical Laplace transform

The Laplace transform has proved to be an efficient tool to study transient phenomena. It is commonly used in control
systems. To overcome difficulties encountered in the inversion of Laplace transforms, Wilcox introduced the numerical
Laplace transform [6]. Since then, the NLT has been successfully applied to several fields such as electrical transmission
lines [6-8], vibrations [9-12], and acoustics [13,14]. For instance, Ni et al. combined the NLT to the pseudo-force method to
analyze the nonlinear transient response of a suspended cable subjected to an arbitrary dynamic load [12].

3.1. Formulation of the NLT

The analytical Laplace transform and its inverse are defined as follow:

+o0
L)} = Ls) = /0 fHestd, (16)
L) = f(t) = ﬁ /a T:’ L(s)est ds, (17)

with s = g + iw and where ¢ is an artificial damping factor. For real, causal signals, Egs. (16) and (17) can be rewritten as

—+o00 . +o0 .
L(o + iw) = / f® e— (0ot q¢ _ / If(6) efat] et g, (18)
—0 J—oo
1 400 ) eo’t +o00 )
ft) = %/ L(o + i) e@HO dgy = %/ L(o +iw)e "t dw. (19)

Knowing that the analytical Fourier transform is defined as

r+00 .
FUO)=Fe) = [ foeiotd (20)
J —00
and its inverse was defined in Eq. (2), then Eqgs. (18) and (19) become
L(o +iw) = F{f(t)e 4}, (21)

ft) = e’ 7 Lo + im)). (22)
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Hence, the numerical Laplace transform can be implemented in Matlab by means of the fast Fourier transform (FFT)
algorithm.

3.2. Selection of o

The real part of the Laplace variable (¢) must be set in order to use standard FFT procedures. The value of o is set
according to two criteria described below. First, in Eq. (21), o acts as an artificial damping factor on the time signal, as long
as its value is positive. The greater ¢ is, the more damped the time signal becomes, and therefore, the causality errors due to
the discretization of the spectrum are reduced. In fact, replications still overlap with the studied time signal in the interval
0 < t < Tmax, but their amplitudes are several orders of magnitude lower (i.e. e~¢Tmax <¢0), However, in Eq. (22), a positive
o leads to a reconstructed signal f(t) that increases exponentially with time. If the value of ¢ is great, the smallest residual
signal at the end of the observation window will thus explode, leading to unrealistic results. The selection of ¢ is made of a
compromise between the need to damp the time signal and the need to limit the numerical instability.

Different authors have proposed ways to set parameter ¢. The most common ones are presented in Table 1. In all cases,
the longer is the time signal, the less damping is required. This brings us back to the previous statement: increasing the
duration of the time signal reduces the causality error. In addition, Wedepohl proposed a relationship with N, the number
of points in the time signal [7]. Given a value of Tmax, the sampling frequency ws is higher for a larger value of N. Therefore,
the truncation of the spectrum is less significant and the value of ¢ can be set higher. In the present work, the Wedepohl
parameter is used.

3.3. Reduction of the Gibbs phenomenon

As it was previously seen, the Gibbs phenomenon appears at sharp amplitude changes in a given time signal. Hence,
oscillations at frequency 2 may be observed. In the case of a damped oscillating time signal resulting from the inversion of
a discretized and truncated spectrum, discontinuities are likely to occur at the beginning and at the end of the time period.

The Gibbs phenomenon is particularly problematic when an inverse Laplace transform is applied to the truncated
spectrum: the high frequency ripples at the end of the time signal become over amplified due to the exponential term (e®")
in Eq. (22). Fig. 4 illustrates the amplified Gibbs phenomenon on an arbitrary time signal with a discontinuity. A time signal
(= = =) is shown with a discontinuity at t = 17 ms. The time signal obtained from the inverse NLT of the corresponding
truncated spectrum ( ) contains oscillations of increasing amplitude near the discontinuity. These high frequency
ripples can be observed over a relatively long time prior to the discontinuity. However, Gibbs oscillations at the vicinity of
t = 0 are not amplified since the exponential term in Eq. (22) is unitary at this time.

Table 1
Functions proposed to set the value of a.

Author Proposed o
Wilcox [6] 27/ Tmax
Wedepohl [7] 21In(N)/Tmax
Krings and Waller [9] 10/Tmax < 0 < 3/Tmax
x 107
3.0
2.5 I

2.0

Displacement (m)
&

Discontinuity

15 15.5 16 16.5 17 17.5
Time (ms)

Fig. 4. Amplified Gibbs phenomenon: arbitrary time signal (— — =) and time signal from the inverse NLT (=——).
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There are two ways to reduce the effects of the Gibbs phenomenon. The first one is to increase the sampling frequency
so that truncation of the spectrum is less significant. However, this is not always possible experimentally, since sampling
frequency is limited by the acquisition device. In the case of simulated signals, time steps are limited by the computer
resources, so the sampling frequency cannot be increased infinitely. A compromise must be reached to obtain a proper time
signal with acceptable computer time and memory.

Windowing in the frequency domain was introduced as a second way to reduce the Gibbs phenomenon [15]. The
rectangular window given by Eq. (4) and applied to the frequency spectrum can be replaced by other windows to reduce
the truncation effect. Several windows such as Hanning, Blackman, Lanczos, and Riesz were studied by Ramirez et al. [8].
However, the amplitudes of such windows decrease rapidly in the spectrum and this is not suitable for broadband signals
such as impact response signals. It would lead to a significant attenuation of high frequency components which would be
detrimental to the recovery of the initial time signal. A Tukey window can be used as a trade-off between Hanning and
rectangular windows. It is defined as [16]

N
1, \Q|<E—Qs
N
r@=x 4 LANCEs N N (23)
5 1 — cos —a || E—QSIQIST

where N/2 is the maximum value taken by g and Q is the width of the tapered rim. In the present work, the width of the
tapered rim is set in such a way that 2Q /N = 30 percent.

It is therefore proposed to present the EOM of the PCLD treated beam in the Laplace domain, in order to obtain a causal
response for systems with any amount of damping.

4. PCLD beam model in the Laplace domain

Although the baseline model was fully presented by Granger and Ross [5], the model is briefly described in this section
in order to present and outline the particularities pertaining to the application of the Laplace transforms.

4.1. Geometry

The system consists of a homogeneous, uniform beam of length Ly and arbitrary boundary conditions, padded with a
partial constrained viscoelastic layer. In Fig. 5, the base beam is cantilevered. The damping treatment of length L. is
composed of two layers and is installed from x; to x5, where x is the axial coordinate of the beam. Each layer has a thickness
hg and a density pg, where = b, v, or c for the base beam, the viscoelastic layer, and the constraining layer, respectively.
The system has a uniform width B. The force is applied at x;, and xg indicates the location where the response of the system
is measured (not shown in Fig. 5). The mechanical and physical assumptions for the model were presented by Granger and
Ross [5].

The system displacements are defined as follow, and are shown in Fig. 6:

1. w(x, t) is the transverse displacement of the system along the z-axis;
2. up(x,t) is the longitudinal displacement of the base beam along the x-axis; and
3. uc(x, t) is the longitudinal displacement of the constraining layer along the x-axis.
4.2. Viscoelastic shear modulus
Viscoelastic shear properties are frequency dependent [17]. In the present work, accurate representation of the core

layer both in the frequency and time domains is obtained by using Prony series to represent the viscoelastic properties. The

z Constraining layer

Viscoelastic layer

Base beam

N Ly

Fig. 5. Base beam with viscoelastic PCLD [5].
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Fig. 6. Deformed element with displacements [5].

Laplace transform is used to write the Prony series in the Laplace domain [18,19]:

" G rs
G (5) = Go—cozgn+z 08nn (24)

where 1, and g, are the material specific parameters, Gy = G(t = 0) is the instantaneous relaxation modulus, and Np is the
number of terms required to properly describe the material. The storage modulus is given as Gs = Re(G*) and the loss
modulus is G; = Im(G*).

4.3. Equations of motion

The Lagrange’s equations were used to derive the EOM of the PCLD beam, which was discretized using the assumed
modes method [20]:

b v Q,
M{E, » + K G 3= 0 3. (25)
%C & 0

The generalized coordinates \, &, and &, are related to the beam displacements w, up, and uc, respectively, through
admissible functions [20,21]. The generalized force is given by Qy = f(W(x = xf), where the actual impact force applied at
X =Xf is f(x,t) = o(x — xf)f(t).

The potential energy in the viscoelastic layer is due to shear stress. As a result of the complex shear modulus G*(s)
introduced above, the potential energy (V73;) of this layer is also complex valued. The real part of V}; is actually strain energy,
and the imaginary part is associated with energy dissipation. Therefore, the generalized stiffness matrix K* is complex
valued since it contains the frequency dependent viscoelastic shear modulus (G*). The mass matrix M is real valued.

4.4. Solving for transient response

As discussed by Granger and Ross, the stiffness of the system is better represented in the frequency domain [5].
Therefore, it is more convenient to write the EOM (Eq. (25)) in the Laplace domain, i.e.

v Q
K +s°M){ & b ={ 0 3}, (26)
g, 0

where the overline symbol indicates a Laplace-transformed term which is a function of frequency (s = ¢ + iw). A Dirac
impulse d(x — x7)d(t) is applied in the Laplace domain, i.e. QT/, = W(x = xy), to obtain the frequency response function for
the transverse displacements of the beam, for an excitation load located at x = x;. The actual forcing function f(t) is
Laplace-transformed using Eq. (21) and multiplied with the FRF to give the response of the beam in the Laplace domain.
A Tukey window (Eq. (23)) and an inverse NLT (Eq. (22)) are then applied to obtain the time domain response w(x, t)
of the beam.
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Table 2
Characteristics of the simulated beams.

Base beam Viscoelastic layer Constraining layer

Material Aluminum 3003 Urethane CPA-850 Aluminum 3003
Density (kg/m3) 2710 1124 2710
Young's modulus (GPa) 70 - 70
Instantaneous relaxation Modulus (MPa) - 14.1 -
Length (mm) 509 - -
Width (mm) 25.4 25.4 25.4
Thickness (mm) 3.175 3.175 1.588
Table 3
PCLD configurations.

Beam A Beam B Beam C
PCLD length (mm) 250 126 75
PCLD location (mm) 78 241 272

Z

5]

o

Y

)

[ 9

-2
0 0.5 1 1.5 2
Time (ms)
Fig. 7. Impact forces applied to Beams A (———), B (= © =), and C (—g—).

Table 4
Dynamic parameters of the viscoelastic layer.
n &n Tn
1 0.2 0.007
2 0.63 0.07

5. Results

Simulations were carried out to compare the Laplace transform method presented here with the Fourier transform
method presented previously. Table 2 presents the constant parameters of the base beam, the viscoelastic layer and the
constraining layer. Three cantilever beams were tested, each with a different PCLD configuration. In Table 3, all locations
were measured from the clamped edge of the beam. PCLD location represents the distance from the clamp to the edge of
the pad. Impacts were performed at 40 mm, and the displacements are given for a point located at 335 mm from the clamp.
The impact force signals used were the same as presented by Granger and Ross [5] and are shown in Fig. 7. Parameters of
the complex shear modulus of the viscoelastic layer (Eq. (24)) were obtained by using stress relaxation tests. The
instantaneous relaxation modulus is given in Table 2, and the frequency dependent parameters are given in Table 4.

The simulation times for the Fourier and the Laplace approaches were 20s and 25 ms, respectively. The time step was
0.04 ms in all simulations. Results from both the Laplace ( ) and the Fourier (- & =) approaches are presented in Fig. 8
for Beam A, Fig. 9 for Beam B, and Fig. 10 for Beam C. Initial displacements are shown with respect to time for 22 ms after
the beginning of the impact.
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Displacement (m)

Time (ms)

Fig. 8. Time response of impacted Beam A: inverse NLT ( ) and inverse DFT (— @ —).

-5

x 10

Displacement (m)

Time (ms)

Fig. 9. Time response of impacted Beam B: inverse NLT (

) and inverse DFT (— @ —).

-5

x 10

Displacement (m)

0 5 10 15 20

Time (ms)

Fig. 10. Time response of impacted Beam C: inverse NLT ( ) and inverse DFT (— @ —).

Beam A is a fairly well damped beam. For this reason, the time response of the beam has died out inside the Fourier
simulation window (20 s) and there is no error at time ¢ = 0: there is no time aliasing and the response signal is causal. In
this case, both the Fourier and the Laplace approaches yield exactly the same results in Fig. 8. Results for this type of



880 J.-E Blais et al. / Journal of Sound and Vibration 326 (2009) 870-882

Absolute error (m)

0 100 200 300 400 500
Time (ms)

Fig. 11. Absolute error between the Fourier and the Laplace solutions, for Beam C.

Er( f) / max [Er( /)]
=

0 50 100 150 200
Frequency (Hz)

Fig. 12. Normalized error spectrum between the Fourier and the Laplace solutions, for Beam C.

configuration have previously been shown to be in very good agreement with experiments, and presented no visible
causality error [5].

Beam B is a moderately damped beam. At the end of the Fourier simulation window, the displacements of the beam are
sizeable (—3.4 um). In Fig. 9, the initial response at time t = 0 ms with the Fourier approach is also —3.4 pm. This initial
error is significant and corresponds to approximately 10 percent of the maximum displacement within the simulation
window. Although the Laplace simulation window was 800 times shorter than the Fourier window, the results from the
Laplace approach show no initial error. Except for the initial error in the Fourier calculations, which decreases regularly and
seems to last for about 11 ms, the two signals are quite similar. Slight differences appear after 17 ms.

Beam C is a poorly damped beam. Displacements at the end of the Fourier simulation window (—10.8 um) are in the
order of 48 percent of the maximum displacements. In Fig. 10, the initial error with the Fourier approach (also —10.8 pm) is
approximately 22 percent of the maximum displacement. Again, the results from the Laplace approach show no initial
error. The two calculated responses are fairly similar in terms of peak location, but the amplitudes of the peaks are quite
different. In this case, the discrepancies also diminish regularly and last for about 9 ms. However, discrepancies reappear
increasingly around 15 ms and after, and reach a level similar to that observed at time t = 0. This is to say that aliasing
seems to affect not only the very beginning of the signal, but possibly the entire signal.

In order to better understand the nature of the phenomenon, the absolute error of the Fourier solution with respect to
the Laplace solution was plotted against time over 500 ms, for Beam C (Fig. 11). The error seems to be harmonic with a very
low frequency. Its amplitude remains relatively constant throughout the observation window (about 4.5 cycles). It can
therefore be stated that aliasing using the Fourier approach affects the response of the beam in an alternating way over a
long time. To further study the error, its amplitude spectrum Er(f) was normalized with respect to its maximum and was
plotted in Fig. 12. The spectrum contains a very neat and narrow peak at 9.5 Hz. This value corresponds to the first natural
frequency of the padded Beam C. In this beam, the first transverse mode is very little damped, since the PCLD is small and
located far from the clamp. This mode is thus comparable to that of the single dof system used to describe aliasing in
Section 2. Due to the discretization of the spectrum, the time response of this mode is being folded back to the beginning of
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Fig. 13. Time response of impacted Beam C, calculated ( ) and measured (— @ =).

the time signal. In the present configuration, higher modes are less present in the impulse response, and are better damped
than the first mode; therefore, their contribution to time aliasing is negligible.

6. Experimental validation

Experiments were carried out to validate the new solution method. Beam C was selected for this, since it is the one with
the greatest aliasing error when using the Fourier approach. The impact conditions and force signals were obtained using
an instrumented hammer. The duration of contact was about 1 ms. Displacements were obtained from an eddy current
proximity probe. The sampling frequency for both the force and the displacement was 25 kHz (At = 0.04 ms). All testing
conditions were identical to those described in Section 5.

The time response of Beam C was also calculated using the Laplace approach. The force signal measured on the
experimental setup was used as the excitation force in the simulations. Fig. 13 shows the displacements obtained from the
experiments (- © —) and from the simulation ( ). Although Beam C is considered a worst case configuration, it can be
seen that the simulated results are in excellent agreement with the experiments. No causality error can be observed. All
peaks occur at the appropriate times, so no phase lag is observed. Some minor differences exist between the experimental
and simulated responses, which are most likely due to experimental errors, and to the accuracy of the material properties
used in the simulations.

7. Conclusion

In this paper, signal processing issues encountered when an analytical spectrum is converted in the time domain with
an inverse discrete Fourier transform were discussed. It was shown analytically that the discretization of a continuous
frequency spectrum leads to time aliasing and hence, to the noncausal effects previously observed by Granger and Ross.
Moreover, time aliasing can cause considerable errors over the entire duration of the observation window, as it was shown
with the numerical inversion of the FRF of a lightly damped system.

The numerical Laplace transform was introduced to suppress time aliasing, without requiring enormous simulation
time as compared to the duration of the observation window. The real part of the Laplace variable was set to a constant
value, so that the NLT and its inverse could be calculated using standard FFT algorithms. In counterpart, a Tukey window
had to be used in the Laplace domain to avoid amplification of the Gibbs oscillations which were due to the truncation of
the analytical spectrum.

The Laplace transform approach was applied to calculate the transient time response of impacted beams with a partial
constrained viscoelastic layer. The results simulated over 25 ms showed that causality was perfectly respected, regardless
of the amount of damping in the system. As a comparison, the Fourier approach solution proposed by Granger and Ross,
and simulated over 20 lead to causality errors worth up to 22 percent of the maximum displacement. The Laplace model
and solution method are thus much more efficient than the Fourier approach, both from a computational point of view and
for the quality of the results. Comparisons with experiments confirmed that modeling the system in the Laplace domain to
calculate the transient displacements yielded excellent results.

It was discussed in previous work that the transient time response of an impacted mechanical structure contained
valuable information on the system itself [5]. The present proposed model offers the opportunity to obtain the time
response of the structure to any arbitrary excitation, regardless of the amount of damping. In future work, transmission and
reflection of flexural and axial waves in each layer could be studied from a phenomenological point of view for a better
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understanding of energy dissipation in viscoelastic materials. Such capability would greatly increase our ability to design
vibration treatments for impacted structures.
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